Vx-8xx3 Series Balanced Plug Valve Assemblies

Invensys VA, VF, VK, VK4, and VS-8xx3-xxx-5-P series valve assemblies are complete actuator/valve assemblies that accept two-position, floating, and proportional electric/electronic and proportional pneumatic control signals, for control of chilled water, hot water, or low pressure steam. These valve assemblies consist of pneumatic, electric, or electronic valve actuators either direct-coupled or linked to a $2-1 / 2 "$ to $6 " 2$-way or 3-way valve body with ASA flanged end connections.

VB-8xx3 Series Valve Bodies

VB-8xx3-0-5-P valve bodies are also available separately to allow field mounting of a variety of DuraDrive ${ }^{\circledR}$ or pneumatic actuators using the appropriate linkage.

Features

- Balanced plug design provides high close-offs using economical actuation
- Up to 125 psi (856 kPa) close-off on 2-way models, 35 psi (240 kPa) on 3-way models
- Universal 3-way valve can be piped in either mixing or diverting configurations
- Valve sizes $2-1 / 2^{\prime \prime}$ to 6 ", ASA 125 flanged
- A variety of DuraDrive and pneumatic actuators are available, either as factory assemblies or for field assembly
- ANSI IV shutoff (0.01% of Cv) on 2-way models, ANSI III (0.1% of Cv) on 3-way models
- Self-adjusting spring loaded TFE/EPDM packing
- Normally open,normally closed, and non-spring return models available
- Expanded temperatures 20° to $281^{\circ} \mathrm{F}$
- ISO 9001:2000 Certified Quality Management System

VK-82x3 with MK-6911

Applicable Literature

F-Number	Description	Audience	Purpose
F-26642	MA40-704x Series, MA4x-707x Series, MA4x-715x Series, DuraDrive Spring Return Two-Position Actuators General Instructions	- Sales Personnel - Application Engineers - Installers - Service Personnel - Start-up Technicians	Describes the actuators' features, specifications, wiring information and possible applications. Provides step-by-step mounting instructions.
F-26644	MF40-7043, MF4x-7073 Series and MF4x-7153 Series General Instructions		
F-26742	MA40-717x DuraDrive Spring Return Two-Position Actuators General Instructions		
F-27120	MAx1-720x Two Position Series, MFx1-7103 Floating Series, MSx1-7103 Proportional Series Linear DuraDrive General Instructions		
F-26744	MF41-6343 DuraDrive Non-Spring Return Floating Actuators General Instructions		
F-24732	MF-631x3 Floating Valve Actuator General Instructions		
F-26745	MS41-6343 DuraDrive Non-Spring Return Proportional Actuators General Instructions		
F-26749	MF40-7173 DuraDrive Spring Return Floating Actuators General Instructions		
F-13895	MK-6600 Series, MK-6800 Series, and MK-6911 General Instructions		
F-26645	MS40-7043, MS41-7073, MS41-7153 DuraDrive Spring Return Proportional Actuators General Instructions		
F-26748	MS40-7173 DuraDrive Spring Return Proportional Actuators General Instructions		
F-27082	AV-607, AV-609 Linkage General Instructions		Describes the linkage's features, specifications, and possible applications. Provides step-by-step mounting instructions.
F-27193	VB-8213 Series Valve Body General Instructions		Describes the valve body's features,
F-27194	VB-8223 Series Valve Body General Instructions		specifications, and possible applications. Provides step-by-step mounting
F-27197	VB-8303 Series Valve Body General Instruction		
F-26080	EN-205 Water System Guidelines	- Sales Personnel - Application Engineers - Service Personnel	Describes Invensys Building Systems' approved water treatment practices

Product Guide Contents

Features . page 1
Globe Valve Assembly Part Numbering System and Selection Procedure page 4
Globe Valve Bodies . page 5
Electric and Pneumatic Actuators and Linkages . page 6
Linkage Kits and Actuator/Linkage Assemblies for Field Assembly page 7
Valve/Actuator Combinations and Operating Pressure Differentials page 8
Actuator Specifications and Valve Assembly Mounting Dimensions page 14

Globe Valve Assembly Part Numbering System and Selection Procedure

To select a globe valve assembly, choose the following:

Note: Consult Table 1 and Tables 7 to 13 to confirm that the actuator/valve combination is
feasible and that close-off and maximum differential pressures are suitable for the application.

Globe Valve Bodies

Table-1 Specifications for Globe Valve Bodies

a VB-8303 valves will also operate satisfactorily as two-way angle valves if either end (side) port is closed off.
b CAUTION: Freeze protection required for temperatures below $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$. Avoid ice formation on stems.
c Valve in closed position. See Table-8 to Table-13 for maximum allowable differential pressure for valve in any open position.
d VB-8303 may be piped as either mixing or diverting, bottom (AB) port common.
e Diverting configuration, flow $A B$ to A ports.
f Diverting configuration, flow $A B$ to B ports.
g All diverting flow configurations, flow $A B$ to either A or B ports.

Electric and Pneumatic Actuators and Linkages

Table-2 Floating and Proportional Non-Spring Return Electric Jackscrew and DuraDrive Actuators

Actuator Part Number	Actuator Code	Control Signal	Power Input @ 50/60 Hz				Timing, sec. ${ }^{\text {a }}$		Output Force or Torque	Manual Override
			Voltage	VA		Watts				
				Running	Holding		50 HZ	60 HZ		
MF-63103	301	Floating	$24 \mathrm{Vac}+10 \% /-15 \%$	6.7	-	6.4	<120	<144	$\begin{gathered} 210 \mathrm{lbf} \\ (935 \mathrm{~N}) \end{gathered}$	Yes
MF-63123	303	(SPDT)								
MF-63123-211	423	Proportional (Vdc)								
MF-63123-411	422	Proportional (mAdc)								
MF41-6343 ${ }^{\text {b }}$	516	Floating (SPDT)	$24 \mathrm{Vac} \pm 20 \%$	7.1	3.6	3.8	<145	<145	$\begin{aligned} & \hline 300 \mathrm{lb}-\mathrm{in} \\ & (34 \mathrm{~N}-\mathrm{m}) \end{aligned}$	
MS41-6341 ${ }^{\text {b }}$	514	Propotional (Vdc or mAdc)	240 Vac $\pm 10 \%$	7.1	5.0	4.8	<145	<145	$\begin{aligned} & 300 \mathrm{lb}-\mathrm{in} \\ & (34 \mathrm{~N}-\mathrm{m}) \end{aligned}$	
MS41-6340 ${ }^{\text {b }}$	512	Propotional (Vdc or mAdc)	$120 \mathrm{Vac} \pm 10 \%$	7.1	5.0	4.8	<145	<145	$\begin{aligned} & 300 \mathrm{lb}-\mathrm{in} \\ & (34 \mathrm{~N}-\mathrm{m}) \end{aligned}$	
MS41-6343 ${ }^{\text {b }}$	516	Propotional (Vdc or mAdc)	$24 \mathrm{Vac} \pm 10 \%$	7.1	5.0	4.8	<145	<145	$\begin{aligned} & 300 \mathrm{lb}-\mathrm{in} \\ & (34 \mathrm{~N}-\mathrm{m}) \end{aligned}$	

a Approximate timing @ $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ with no load
b Actuator plus linkage is available as an assembly by adding -220 (AV-607 linkage) or -230 (AV-609 linkage) after the actuator number. Refer to Table 7 for a complete offering. $\mathrm{M} \times 41-634 \mathrm{x}$ is not compatible with the $\mathrm{AV}-607$ linkage.

Table-3 Two-Position, Floating, and Proportional Spring Return Electric 220 lbf DuraDrive Linear Actuators

Actuator Part Number	Actuator Code	Control Signal Type	Power Input								Timing, Seconds ${ }^{\text {a }}$		Output Force, Ibf (N)	Manual Override
			Voltage 50/60 Hz	Running				$\begin{gathered} \text { DC } \\ \text { Amp } \end{gathered}$	Holding					
				50 Hz		60 Hz			50 Hz	60 Hz		Spring		
				VA	W	VA	W		W	W		Return		
MA61-7200	595	2-Position (SPST or Triac)	$120 \mathrm{Vac} \pm 10 \%$	11.7	8.8	10.0	8.4	-	3.6	5.0	<190	<40	$\begin{gathered} 220(979) \\ \text { minimum } \\ 495(2202) \\ \text { max. stall } \end{gathered}$	Yes
MA61-7201	594		$230 \mathrm{Vac} \pm 10 \%$	15.5	9.5	10.6	8.5	-	4.6	3.3				
MA61-7203	596		$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	9.8	7.5	9.7	7.5	0.29	2.8	2.8				
MF61-7203	596	Floating (SPDT)	$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	9.8	7.7	9.7	7.7	0.3	3.3	3.3				
MS61-7203	596	Proportional (Vdc or mAdc)	$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	9.8	7.4	9.7	7.4	0.28	2.9	2.9				

a Approximate timing @ $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ with no load

Table-4 Two-Position, Floating and Proportional Spring Return Electric 133 lb-in DuraDrive Actuators

Actuator Part Number	Actuator Code	Control Signal Type	Power Input								Timing, Seconds ${ }^{\text {a }}$		Torque, lb-in $(\mathrm{N}-\mathrm{m})^{\mathrm{b}}$	Manual Override
			Voltage 50/60 Hz	Running				DC	Holding					
				50 Hz		60 Hz			50 Hz	60 Hz		Spring		
				VA	W	VA	W		W	W		Return		
MA41-7150 ${ }^{\text {c }}$ d	552	2-Position (SPST)	$120 \mathrm{Vac} \pm 10 \%$	11.7	8.8	10.0	8.4	-	3.6	5.0	<190	<30	$\begin{aligned} & 133 \\ & (15) \end{aligned}$	Yes
MA41-7151 ${ }^{\text {c }}$	554		$230 \mathrm{Vac} \pm 10 \%$	15.5	9.5	10.6	8.5	-	4.6	3.3				
MA41-7153 ${ }^{\text {c }}$	556		$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	9.8	7.5	9.7	7.5	0.29	2.8	2.8				
MF41-7153 ${ }^{\text {c }}$	556	Floating (SPDT)	$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	9.8	7.7	9.7	7.7	0.3	3.3	3.3				
MS41-7153 ${ }^{\text {c }}$	556	Proportional (Vdc or mAdc)	$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	9.8	7.4	9.7	7.4	0.3	2.9	2.9				

${ }^{\text {a }}$ Approximate timing @ $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ with no load
b De-rating required for spring return actuators at low temperatures
c Actuator plus linkage is available as an assembly by adding -220 (AV-607 linkage) or -230 (AV-609 linkage) after the actuator number. Refer to Table 7 for a complete offering.
${ }^{d}$ The CE Directive is not applicable to this model

Table-5 Two Position, Floating, and Proportional Spring Return Electric 150 lb-in DuraDrive Actuators

Actuator Part Number	Actuator Code	Control Signal Type	Power Input				Approximate Timing, Seconds @ 70 ${ }^{\circ} \mathrm{F}$ $\left(21^{\circ} \mathrm{C}\right)$ with no Load		Actuator Output Torque Rating, lb-in (N-m) ${ }^{\text {a }}$	Manual Override
			Voltage	Running		Watts	Powered	Spring Return		
				Running	Holding					
MA40-7170 ${ }^{\text {b }}$	572	2-Position (SPST)	$120 \mathrm{Vac} \pm 10 \%$	11.4	9.4	7.2	<145	<75	150 (17)	No
MA40-7171	574		$240 \mathrm{Vac} \pm 10 \%$	11.8	9.5	7.4				
MA40-7173	576		$24 \mathrm{Vac} \pm 20 \%$	9.6	4.1	5.4				
MF40-7173	576	Floating	$24 \mathrm{Vac} \pm 20 \%$	10.0	4.3	5.5				
MS40-7170	572	Proportional (Vdc or mAdc)	$120 \mathrm{Vac} \pm 10 \%$	11.1	9.1	7.1				
MS40-7171	574		$240 \mathrm{Vac} \pm 10 \%$	11.8	10.1	7.2				
MS40-7173	576		$24 \mathrm{Vac} \pm 20 \%$	9.4	5.4	7.1				

a De-rating required for spring return actuators at low temperatures
b The CE Directive is not applicable to this model
Table-6 Proportional Spring Return Pneumatic Actuators

Actuator Part Number ${ }^{\text {a }}$	Actuator Code	Nominal Spring Range, psig (kPa) ${ }^{\text {b }}$	Effective Area, $\mathrm{in}^{2}\left(\mathrm{~cm}^{2}\right)$
MK-6811	602	5 to 10 (34 to 69)	50 (323)
MK-6911 w/AK-42309-500	652	5 to 10 (34 to 69)	50 (323)

a AK-42309-500 Positive Positioner (order separately) optional for 2-1/2" to 5" valves, required for 6" valves. VK4 factory valve assemblies include positive positioner.
b Field adjustable with positive positioner.

Table-7 Linkage Kits and Actuator/Linkage Assemblies for Field Assembly

Application	Actuator	Linkage Kit ${ }^{\text {a }}$	Actuator/Linkage Assembly
2-1/2" to 5" 2-Way \& 3-Way	MK-6811 ${ }^{\text {b }}$	AV-497	-
6" 2-Way \& 3-Way	MK-6911 ${ }^{\text {b }}$		-
$2-1 / 2 " \text { to } 5 "$ 2-Way and 3-Way (1" nominal stroke)	MA41-7150 MA41-7151 MA41-7153 MA40-7170 MA40-7171 MA40-7173	AV-607	MA41-7150-220 MA41-7151-220 MA41-7153-220 MA40-7170-220 MA40-7171-220 MA40-7173-220 MF41-7153-220 MF40-7173-220 MS41-7153-220 MS40-7170-220 MS40-7171-220 MS40-7173-220
$\begin{gathered} 6 " \\ \text { 2-Way \& 3-Way } \\ \text { (1-3/4" nominal stroke) } \end{gathered}$	MF41-6343 ${ }^{\text {a }}$ MF41-7153 MF40-7173 MS41-6340 ${ }^{\text {a }}$ MS41-6341 ${ }^{\text {a }}$ MS41-6343 ${ }^{\text {a }}$ MS41-7153 MS40-7170 MS40-7171 MS40-7173	AV-609	MA41-7150-230 MA41-7151-230 MA41-7153-230 MA40-7170-230 MA40-7171-230 MA40-7173-230 MF41-6343-230 MF41-7153-230 MF40-7173-230 MS41-6340-230 MS41-6341-230 MS41-6343-230 MS41-7153-230 MS40-7170-230 MS40-7171-230 MS40-7173-230
$\begin{gathered} 2-1 / 2^{\prime \prime} \text { to } 5 " \\ \text { 2-Way \& 3-Way } \\ \text { (1" nominal stroke) } \end{gathered}$	MF-63103 MF-63123 MF-63123-211 MF-63123-411	AV-672	-

a $M x 61-720 x$ Actuators require no separate linkage. $\mathrm{Mx41-634x}$ is not compatible with $\mathrm{AV}-607$.
b AK-42309-500 (order separately) optional for 2-1/2" to 5 " valve, required for 6 " valve. VK4 factory valve assemblies include positive positioner.

Valve/Actuator Combinations and Operating Pressure Differentials

2-Way and 3-Way Globe Valve Assemblies

Note: Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult Table-1 on page 5 for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Two-Way Electric Non-Spring Return Models

Table-8 2-Way Globe Valve Assemblies with Electric Non-Spring Return Actuators

a MF-63123-211 includes MFC-8000 control module factory set for 6-9 Vdc control signal. May be field adjusted for other ranges. Actuator, control module, linkage, and valve body included with factory valve assembly. Components may be purchased separately for field assembly.
b MF-63123-411 includes MFC-420 control module factory set for 4-20 mAdc control signal. May be field adjusted for other ranges. Actuator, control module, linkage, and valve body included with factory valve assembly. Components may be purchased separately for field assembly.
c See Globe Valve Assembly Part Numbering System and Selection Procedure to determine a specific part number.
${ }^{d} \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{C}_{\mathrm{v}} / 1.156 \quad \mathrm{C}_{\mathrm{v}}=\mathrm{gpm} / \sqrt{\Delta \mathrm{P}}$ (in psi).
e Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult Table-1 on page 5 for close-off pressure ratings.

2-Way and 3-Way Globe Valve Assemblies

Note: Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult Table-1 on page 5 for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Three-Way Electric Non-Spring Return Models

Table-9 3-Way Globe Valve Assemblies with Electric Non-Spring Return Actuators

a MF-63123-211 includes MFC-8000 control module factory set for 6-9 Vdc control signal. May be field adjusted for other ranges. Actuator, control module, linkage, and valve body included with factory valve assembly. Components may be purchased separately for field assembly.
b MF-63123-411 includes MFC-420 control module factory set for 4-20 mAdc control signal. May be field adjusted for other ranges. Actuator, control module, linkage, and valve body included with factory valve assembly. Components may be purchased separately for field assembly
c See Globe Valve Assembly Part Numbering System and Selection Procedure to determine a specific part number.
${ }^{d} \quad k_{v s}=m^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{C}_{\mathrm{v}} / 1.156 \quad \mathrm{C}_{\mathrm{v}}=\mathrm{gpm} / \sqrt{\Delta \mathrm{P}}$ (in psi).
e Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult Table-1 on page 5 for close-off pressure ratings.
f Mixing configuration, ports A and B are inlets, $A B$ port is outlet.
g Diverting configuration, flow $A B$ to A port.
${ }^{h}$ Diverting configuration, flow $A B$ to B port.
i All flow configurations, mixing or diverting.

2-Way and 3-Way Globe Valve Assemblies

Note: Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult Table-1 on page 5 for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Two-Way Electric Spring Return Models

Table-10 2-Way Globe Valve Assemblies with Electric Spring Return Actuators

					Mx61-720x	Mx41-715x	Mx40-717x	
2-Way	Spring Globe Val	Return ve Assemb						
					A	or Output Rating (min		
					220 lbf (979 N)	$133 \mathrm{lb}-\mathrm{in}$ ($15 \mathrm{~N}-\mathrm{m}$)	$150 \mathrm{lb}-\mathrm{in}(17 \mathrm{~N}-\mathrm{m})$	
	品					or Models (Actuator		
							Two-Positio	
					Two-Position	Two-Position	MA40-7170 (572)	
					MA61-7200 (595)	MA41-7150 (552)	MA40-7171 (574)	
	$\\|$				MA61-7201 (594)	MA41-7151 (554)	MA40-7173 (576)	
					MA61-7203 (596)	MA41-7153 (556)	Floating	
					Floating	Floating	MF40-7173 (576)	
					MF61-7203 (596)	MF41-7153 (556)	Proportional	
					MS61-7203 (596)	Proportional MS41-7153 (556)	$\begin{aligned} & \text { MS40-7170 (572) } \\ & \text { MS40-7171 (574) } \end{aligned}$	
							MS40-7173 (576)	
						Linkage Kit Part Numbe		
					None (Part of Actuator)	$\begin{gathered} \left.\hline \text { AV-607 (2-1/2" to } 5^{\prime \prime}\right) \\ \text { AV-609 (6") } \end{gathered}$	$\begin{gathered} \text { AV-607 (2-1/2" to } \left.5^{\prime \prime}\right) \\ \text { AV-609 (6") } \end{gathered}$	
Valve Assembly Part Number ${ }^{\text {a }}$	P Code	Valve Size in.	$\mathrm{C}_{\mathrm{v}}{ }^{\text {b }}$	$\mathrm{kvs}^{\text {d }}$	Maxi	Allowable Operating Pressure ${ }^{\text {c }}$, psi (kPa)	rential	
	12	2-1/2	56	48				
	13	3	85	74	35 (240)	35 (240)	35 (240)	
	14	4	145	125	35 (240)	35 (240)	35 (240)	
	15	5	240	208				
	16	6	370	320	-	22 (151)	25 (171)	

${ }^{\text {a }}$ See Globe Valve Assembly Part Numbering System and Selection Procedure to determine a specific part number
b $\mathrm{k}_{\mathrm{vs}}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{C}_{\mathrm{v}} / 1.156 \quad \mathrm{C}_{\mathrm{v}}=\mathrm{gpm} / \sqrt{\Delta \mathrm{P}}$ (in psi).
c Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult Table-1 on page 5 for close-off pressure ratings.

2-Way and 3-Way Globe Valve Assemblies

Note: Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult Table-1 on page 5 for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Three-Way Electric Spring Return Models

Table-11 3-Way Globe Valve Assemblies with Electric Spring Return Actuators

${ }^{\text {a }}$ See Globe Valve Assembly Part Numbering System and Selection Procedure to determine a specific part number.
b $\mathrm{k}_{\mathrm{vs}}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{C}_{\mathrm{v}} / 1.156 \quad \mathrm{C}_{\mathrm{v}}=\mathrm{gpm} / \sqrt{\Delta \mathrm{P}}$ (in psi).
c Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult Table-1 on page 5 for close-off pressure ratings.
${ }^{d}$ Mixing configuration, ports A and B are inlets, $A B$ port is outlet.
e Diverting configuration, flow $A B$ to A port.
${ }^{f}$ Diverting configuration, flow $A B$ to B port.
g All flow configurations, mixing or diverting.

2-Way and 3-Way Globe Valve Assemblies

Note: Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult Table-1 on page 5 for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Two-Way Pneumatic Spring Return Models

Table-12 2-Way Globe Valve Assemblies with Pneumatic Spring Return Actuators

a Spring range field adjustable with positive positioner.
b AK-42309-500 positive positioner optional for 2-1/2" to 5" valve, required for 6" valve. Supplied as standard on VK4 factory valve assemblies. See Globe Valve Assembly Part Numbering System and Selection Procedure to determine a specific part number
${ }^{c} \mathrm{k}_{\mathrm{vs}}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{C}_{\mathrm{v}} / 1.156 \quad \mathrm{C}_{\mathrm{v}}=\mathrm{gpm} / \sqrt{\Delta \mathrm{P}}$ (in psi).
d Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consultable- 1 on page 5 for close-off pressure ratings.

2-Way and 3-Way Globe Valve Assemblies

Note: Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult Table-1 on page 5 for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Three-Way Pneumatic Spring Return Models

Table-13 3-Way Globe Valve Assemblies with Pneumatic Spring Return Actuators

					MK-6811 ${ }^{\text {b }}$	MK-6911 ${ }^{\text {b }}$
3-Way	Spring Globe Val	Return ve Assembli				
					Actuato	Codes)
,					MK-6811 (602)	MK-6911 (652)
		$\frac{1}{2}$				ber
					AV-497	AV-497
					Spr	Pa)
					5 to 10 (34 to 69) ${ }^{\text {a }}$	5 to 10 (34 to 69) ${ }^{\text {a }}$
Valve Assembly Part Number ${ }^{\text {b }}$	P Code	Valve Size in.	$\mathrm{C}_{\mathrm{v}}{ }^{\text {c }}$	$\mathrm{k}_{\mathrm{vs}}{ }^{\text {c }}$	Maximum \mathbf{A} Pressure ${ }^{\mathrm{d}}$,	Differential /Diverting)
			$80^{\text {e }}$	$69^{\text {e }}$		
VK-8303-602-5-12	12	2-1/2	$95^{\text {f }}$	$82^{\text {f }}$		
			115^{9}	999		
			$110^{\text {e }}$	$95^{\text {e }}$		
VK-8303-602-5-13	13	3	$120^{\text {f }}$	$104^{\text {f }}$	35 (240) / 35 (240)	
			120^{9}	$104{ }^{\text {g }}$		
VK-8303-602-5-14	14	4	$190^{\text {h }}$	$164{ }^{\text {h }}$		
VK-8303-602-5-15 VK4-8303-602-5-15	15	5	$290{ }^{\text {h }}$	$251^{\text {h }}$		-
VK4-8303-652-5-16	16	6	$500^{\text {h }}$	$433{ }^{\text {h }}$	-	35 (240) / 35 (240)

a Spring range field adjustable with positive positioner.
b AK-42309-500 positive positioner optional for 2-1/2" to 5" valve, required for 6" valve. Supplied as standard on VK4 factory valve assemblies. See Globe Valve Assembly Part Numbering System and Selection Procedure to determine a specific part number.
${ }^{c} \mathrm{k}_{\mathrm{vs}}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{k}_{\mathrm{vs}}=\mathrm{C}_{\mathrm{v}} / 1.156 \quad \mathrm{C}_{\mathrm{v}}=\mathrm{gpm} / \sqrt{\Delta \mathrm{P}}$ (in psi).fx
d Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult Table-1 on page 5 for close-off pressure ratings.
e Mixing configuration, ports A and B are inlets, $A B$ port is outlet.
f Diverting configuration, flow $A B$ to A port.
g Diverting configuration, flow $A B$ to B port.
h All flow configurations, mixing or diverting.

Actuator Specifications and Valve Assembly Mounting Dimensions

Valve Assemblies with MF41-6343 and MS41-6340, MS41-6341, and MS41-6343
Non-Spring Return DuraDrive Electric Actuators

Actuator Specifications						
Inputs						
Control Signal	MF41-6343: SPDT Floating Control, Triacs (500 mA rated), or 2 SPST contacts.					
	MS41-634x: Proportional, 2 to 10 Vdc or 4 to 20 mAdc with an integral 500Ω resistor.					
Power Requirements	All 24 Vac circuits are Class 2. All circuits 30 Vac and above are Class 1.					
	Actuator Code	Part Number	Power Input @ 50/60 Hz			
			Voltage	Running VA	Holding VA	Watts
	516	MF41-6343	$24 \mathrm{Vac} \pm 20 \%$	7.1	3.6	3.8
	512	MS41-6340	$120 \mathrm{Vac} \pm 10 \%$	9.6	8.8	5.0
	514	MS41-6341	$240 \mathrm{Vac} \pm 10 \%$	10.1	9.2	5.2
	516	MS41-6343	$24 \mathrm{Vac} \pm 20 \%$	7.1	5.0	4.8
Connections	24 inch (61 cm) long appliance cables; 18 AWG color coded leads, 1/2" conduit connector. For M20 metric conduit, use AM-756 Adapter.					
Motor Type	Brushless DC					
Outputs						
Electrical	Stroke: Electronically limited to a maximum of $93 \pm 1^{\circ}$; field adjustable to limit travel at either end of stroke.					
Mechanical	Timing: Approximate timing is 145 seconds.					
	Manual Override: Activated by the manual override crank.					
	Output torque rating: $300 \mathrm{lb}-\mathrm{in}$ ($34 \mathrm{~N}-\mathrm{m}$) minimum.					
	Position indicator: Pointer and scale are provided for position indicator.					
Environment						
Temperature Limits	Shipping and storage: -40 to $160^{\circ} \mathrm{F}\left(-40\right.$ to $\left.71^{\circ} \mathrm{C}\right)$ ambient. Operating: -25° to $140^{\circ} \mathrm{F}\left(-32^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ ambient temperature. Maximum allowable ambient: $124^{\circ} \mathrm{F}\left(51^{\circ} \mathrm{C}\right)$ at maximum valve fluid temperature of $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$. Minimum allowable valve fluid temperature $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$.					
Humidity	5 to 95\% RH, non-condensing.					
Locations	NEMA Type 1 (IEC IP30), NEMA Type 4 (IEC IP56) with customer-supplied water tight conduit connectors.					
Agency Listings (Actuator)						
UL	UL 873, Underwriters Laboratories (File \# E9429 Category Temperature-Indicating and Regulating Equipment).					
European Community	EMC Directive (89/336 EEC). Low Voltage Directive (72/23/EEC) Machinery Directive (891392 EEC). Safety Directive (92/59 EEC).					
c-UL	Canadian Standards C22.2 No. 24-93.					
Australia	This product meets requirements to bear the C-Tick Mark according to the terms specified by the Communications Authority under the Radiocommunications Act 1992.					

Figure-1 Mx41-634x-230 Actuator/Linkage Assembly

Dimensions - $\mathbf{6 "}^{\text {" }}$ Flanged Globe Valve Assemblies

Valve Assembly Part Number	Valve Size	Valve Dimensions in inches (millimeters)											
		2-Way (Refer to Figure-2)						3-Way (Refer to Figure-3)					
		A	C	E	F	G	H	A	C	E	F	G	H
$\begin{gathered} \hline \text { 2-Way } \\ \text { Vx-8213-51x-5-16 } \\ \text { 3-Way } \\ \text { Vx-8303-51x-5-16 } \end{gathered}$	$6 "$	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (190) \end{aligned}$	$\begin{gathered} 19-15 / 16 \\ (507) \end{gathered}$	$\begin{gathered} 11 \\ (280) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & 9-3 / 4 \\ & (248) \end{aligned}$	$\begin{gathered} 20-1 / 4 \\ (515) \end{gathered}$	$\begin{gathered} 11 \\ (280) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8223-516-5-16 } \end{gathered}$	$6 "$	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & \hline 6-1 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{gathered} 21-3 / 8 \\ (543) \end{gathered}$	$\begin{gathered} 11 \\ (280) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	-	-	-	-	-	-

Figure-2 Mx41-634x with 6" Flanged 2-Way Globe Valves

Figure-3 Mx41-634x with 6" Flanged 3-Way Globe Valves

Actuator Specifications	
Inputs	
Control Signal	MF-63103 and MF-63123 ${ }^{\text {a }}$: SPDT Floating Control, Triacs (1 A rated) or 2 SPST contacts. MF-63123-211: includes MFC-8000 control module set for 6 to 9 Vdc control signal; actuator extend point adjustable 0 to 12 Vdc ; span adjustable 2 to 10 Vdc . MF-63123-411: includes MFC-420 control module set for 4 to 20 mAdc control signal; actuator extend point adjustable 2 to 16 mAdc; span adjustable 4 to 16 mAdc.
Power Requirements	Voltage: $24 \mathrm{Vac}+10 \% /-15 \%$ @ $50 / 60 \mathrm{~Hz}$. Power Input: 6.7 VA; 6.4 W running. $0 \mathrm{VA}, 0 \mathrm{~W}$ holding. All 24 Vac circuits are Class 2.
Connections	Screw terminals; conduit knockout. MFC control modules plug into actuator circuit board.
Motor Type	Synchronous.
Outputs	
Electrical	MF-63123: $15 \mathrm{k} \Omega$ feedback potentiometer ${ }^{\text {b }}$. Auxiliary switch: Available on MF-631x3-500 models. SPDT adjustable over actuator stroke. Rated 1A @ 24 Vac $50 / 60 \mathrm{~Hz}, 24 \mathrm{VA} @ 24$ Vac pilot duty rating.
Mechanical	Output force rating: 210 lbf (935 N) minimum.
	Timing: 120 seconds at $60 \mathrm{~Hz}, 144$ seconds at 50 Hz .
	Position indicator: Provided.
	Manual override: Activated by the manual override crank.
	Linear stroke: Up to maximum of 1" (25 mm) nominal, self adjusting.
Environment	
Temperature Limits	Shipping and storage: -40° to $160^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.71^{\circ} \mathrm{C}\right)$ ambient. Operating: 0° to $140^{\circ} \mathrm{F}\left(-18^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ ambient temperature. Maximum allowable ambient $125^{\circ} \mathrm{F}\left(52^{\circ} \mathrm{C}\right)$ at maximum valve fluid temperature of $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$. Minimum allowable valve fluid temperature $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$.
Humidity	5 to 95\% RH, non-condensing.
Locations	NEMA Type 1
Agency Listings (Actuator)	
UL	UL 873, Underwriters Laboratories (File \# E9429 Category Temperature-Indicating and Regulating Equipment).
European Community	EMC Directive (89/336/EEC).
c-UL	Canadian Standards C22.2 No. 24-93.

[^0]Dimensions - 2-1/2" to 5" Flanged Globe Valve Assemblies

Valve Assembly Part Number	Valve Size	p Code	Valve Dimensions in inches (millimeters)									
			2-Way (Refer to Figure-4)					3-Way (Refer to Figure-5)				
			A	C	E	F	G	A	C	E	F	G
2-Way$\begin{gathered} \text { Vx-8213-30x-5-P } \\ \text { Vx-8213-42x-5-P } \\ \text { 3-Way } \\ \text { Vx-8303-30x-5-P } \\ \text { Vx-8303-42x-5-P } \end{gathered}$	2-1/2"	12	$\begin{gathered} 8-9 / 16 \\ (217) \end{gathered}$	4 (102)	$\begin{gathered} 13-5 / 16 \\ (338) \end{gathered}$	7 (178)	$\begin{aligned} & 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	$\begin{gathered} \hline 5-7 / 16 \\ (138) \end{gathered}$	$\begin{gathered} 10-1 / 4 \\ (260) \end{gathered}$	7 (178)	$\begin{aligned} & 5-1 / 2 \\ & (140) \end{aligned}$
	3"	13	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & 4-5 / 8 \\ & (117) \end{aligned}$	$\begin{gathered} 12-5 / 8 \\ (320) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	6 (152)	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \end{aligned}$	$\begin{aligned} & 10-1 / 2 \\ & (267) \end{aligned}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	6 (152)
	4"	14	$\begin{aligned} & 11-1 / 2 \\ & (292) \end{aligned}$	$\begin{gathered} 5-1 / 12 \\ (140) \end{gathered}$	$\begin{aligned} & 12-3 / 8 \\ & (315) \end{aligned}$	9 (229)	$\begin{aligned} & \hline-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \end{aligned}$	$\begin{gathered} \hline 8-7 / 16 \\ (214) \end{gathered}$	$\begin{aligned} & 11-1 / 4 \\ & (286) \end{aligned}$	9 (229)	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$
	5"	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 6-15 / 16 \\ (176) \end{gathered}$	$\begin{gathered} 14-15 / 16 \\ (379) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 8-13 / 16 \\ (224) \end{gathered}$	$\begin{gathered} 14-15 / 16 \\ (379) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8223-30x-5-P } \\ \text { Vx-8223-42x-5-P } \end{gathered}$	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	4 (102)	$\begin{gathered} \hline 9-9 / 16 \\ (243) \end{gathered}$	7 (178)	$\begin{aligned} & 5-1 / 2 \\ & (140) \end{aligned}$	-	-	-	-	-
	3"	13	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & 4-1 / 4 \\ & (108) \end{aligned}$	$\begin{gathered} 11-1 / 16 \\ (281) \\ \hline \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	6 (152)	-	-	-	-	-
	4"	14	$\begin{aligned} & 11-1 / 2 \\ & (292) \end{aligned}$	$\begin{gathered} 4-15 / 16 \\ (125) \end{gathered}$	$\begin{gathered} 13-3 / 4 \\ (349) \end{gathered}$	9 (229)	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	-	-	-	-	-
	5"	15	$\begin{gathered} 13 \\ (330) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5-7 / 16 \\ (138) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16-1 / 16 \\ (408) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	-	-	-	-	-

Figure-4 Mx-631x3 Series with Flanged 2-Way Globe Valves

Figure-5 Mx-631x3 Series with Flanged 3-Way Globe Valves

Valve Assemblies with Mx61-720x Spring Return Linear DuraDrive Electric Actuators

Dimensions - Valve Assembly Part Number	Valve Size	$\begin{gathered} \text { P } \\ \text { Code } \end{gathered}$	Valve Dimensions in inches (millimeters)									
			2-Way (Refer to Figure-6)					3-Way (Refer to Figure-7)				
			A	C	E	F	G	A	C	E	F	G
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8213-59x-5-P } \\ \text { 3-Way } \\ \text { Vx-8303-59x-5-P } \end{gathered}$	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	4 (102)	$\begin{aligned} & \hline 12-3 / 8 \\ & (314) \end{aligned}$	7 (178)	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	$\begin{gathered} \hline 5-7 / 16 \\ (138) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13-3 / 4 \\ (349) \end{gathered}$	$\begin{gathered} 7 \\ (178) \end{gathered}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$
	3"	13	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-5 / 8 \\ & (117) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12-5 / 8 \\ & (320) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \\ & \hline \end{aligned}$	$\begin{gathered} 14 \\ (356) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152
	4"	14	$\begin{aligned} & 111-1 / 2 \\ & (292) \end{aligned}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13-3 / 8 \\ & (340) \end{aligned}$	9 (229)	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \end{aligned}$	$\begin{gathered} \hline 8-7 / 16 \\ (214) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14-3 / 4 \\ (375) \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$
	$5 "$	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} \hline 6-15 / 16 \\ (176) \\ \hline \end{gathered}$	$\begin{gathered} 15-1 / 8 \\ (384) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 13 \\ (330) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8-13 / 16 \\ (224) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 15-1 / 8 \\ & (384) \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ (254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8223-59x-5-P } \end{gathered}$	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	4 (102)	$\begin{gathered} \hline 13 \\ (330) \end{gathered}$	7 (178)	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	-	-	-	-	-
	3"	13	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \end{aligned}$	$\begin{gathered} \hline 14-1 / 2 \\ (368) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	6 (152	-	-	-	-	-
	4"	14	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4-15 / 16 \\ (125) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-3 / 8 \\ (391) \end{gathered}$	9 (229)	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	-	-	-	-	-
	5"	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 5-7 / 16 \\ (138) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16-5 / 16 \\ (415) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \end{aligned}$	-	-	-	-	-

Figure-6 Mx61-720x with
2-1/2" to 5" Flanged 2-Way Globe Valves

Valve Assemblies with Mx41-715x Spring Return DuraDrive Electric Actuators

Figure-8 Mx41-715x-220 Actuator/Linkage Assembly

Figure-9 Mx41-715x-230 Actuator/Linkage Assembly

Dimensions - 2-1/2" to 6" Flanged Globe Valve Assemblies

Valve Assembly Part Number	Valve Size	$\begin{gathered} P \\ \text { Code } \end{gathered}$	Valve Dimensions in inches (millimeters)											
			2-Way (Refer to Figure-10)						3-Way (Refer to Figure-11)					
			A	C	E	F	G	H	A	C	E	F	G	H
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8213-55x-5-P } \\ \text { 3-Way } \\ \text { Vx-8303-55x-5-P } \end{gathered}$	2-1/2"	12	$\begin{array}{\|l} \hline 8-9 / 16 \\ (217) \end{array}$	4 (102)	$\begin{gathered} 17-5 / 8 \\ (448) \end{gathered}$	$\begin{array}{\|c\|} \hline 7 \\ (178) \\ \hline \end{array}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 8-3 / 8 \\ & (213) \end{aligned}$	$\begin{array}{\|l} \hline 8-9 / 16 \\ (217)) \end{array}$	$\begin{gathered} \hline 5-7 / 16 \\ (138) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17-5 / 8 \\ (448) \end{gathered}$	$\begin{array}{\|c\|} \hline 7 \\ (178) \end{array}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 8-3 / 8 \\ & (213) \end{aligned}$
	3"	13	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 4-5 / 8 \\ & (117) \end{aligned}$	$\begin{gathered} 17-1 / 2 \\ (444) \end{gathered}$	$\begin{array}{\|l} \hline 7-1 / 2 \\ (191) \\ \hline \end{array}$	6 (152)	$\begin{aligned} & \hline 8-3 / 4 \\ & (222) \end{aligned}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \end{aligned}$	$\begin{gathered} 17-1 / 2 \\ (444) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	6 (152)	$\begin{aligned} & 8-3 / 4 \\ & (222) \end{aligned}$
	4"	14	$\begin{array}{\|l\|} \hline 11-1 / 2 \\ (292) \end{array}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 18-5 / 8 \\ (473) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 8 \\ & (238) \end{aligned}$	$\begin{array}{\|l} \hline 11-1 / 2 \\ (292) \end{array}$	$\begin{gathered} \hline 8-7 / 16 \\ (214) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 18-5 / 8 \\ & (473) \end{aligned}$	$\begin{array}{\|c\|c} \hline 9 \\ (229) \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 8 \\ & (238) \end{aligned}$
	5"	15	$\begin{gathered} 13 \\ (330) \\ \hline \end{gathered}$	$\begin{gathered} 6-15 / 16 \\ (176) \\ \hline \end{gathered}$	$\begin{gathered} 18-9 / 16 \\ (472) \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 10-1 / 16 \\ (256) \end{gathered}$	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} \hline 8-13 / 16 \\ (224) \\ \hline \end{gathered}$	$\begin{gathered} 18-5 / 8 \\ (473) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ (254) \\ \hline \end{array}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{gathered} 10-1 / 16 \\ (256) \\ \hline \end{gathered}$
	$6 "$	16	$\begin{array}{\|c\|} \hline 14 \\ (356) \\ \hline \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (190) \end{aligned}$	$\begin{gathered} 19-15 / 16 \\ (507) \end{gathered}$	$\begin{array}{\|c\|} \hline 11 \\ (280) \end{array}$	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{array}{\|c\|} \hline 14 \\ (356) \end{array}$	$\begin{aligned} & \hline 9-3 / 4 \\ & (248) \end{aligned}$	$\begin{array}{\|c\|} \hline 20-9 / 16 \\ (522) \end{array}$	$\begin{gathered} \hline 11 \\ (280) \end{gathered}$	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8223-55x-5-P } \end{gathered}$	2-1/2"	12	$\begin{aligned} & \hline 8-9 / 16 \\ & (217) \end{aligned}$	4 (102)	$\begin{gathered} 16-1 / 2 \\ (419) \end{gathered}$	$\begin{array}{\|c\|} \hline 7 \\ (178) \end{array}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 8-3 / 8 \\ & (213) \end{aligned}$	-	-	-	-	-	-
	3 "	13	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \end{aligned}$	$\begin{gathered} 17-5 / 8 \\ (448) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152)	$\begin{aligned} & \hline 8-3 / 4 \\ & (222) \end{aligned}$	-	-	-	-	-	-
	4"	14	$\begin{array}{\|l} \hline 11-1 / 2 \\ (292) \end{array}$	$\begin{gathered} \hline 4-15 / 16 \\ (125) \end{gathered}$	$\begin{gathered} 18-1 / 2 \\ (470) \end{gathered}$	$\begin{array}{\|c\|} \hline 9 \\ (229) \end{array}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 8 \\ & (238) \end{aligned}$	-	-	-	-	-	-
	5"	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 5-7 / 16 \\ (138) \end{gathered}$	$\begin{gathered} 19-3 / 4 \\ (502) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 10-1 / 16 \\ (256) \end{gathered}$	-	-	-	-	-	-
	$6 "$	16	$\begin{array}{\|c} \hline 14 \\ (356) \\ \hline \end{array}$	$\begin{aligned} & \hline 6-1 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 21-3 / 8 \\ (543) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 11 \\ (280) \\ \hline \end{array}$	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \\ & \hline \end{aligned}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	-	-	-	-	-	-

Figure-10 Mx41-715x with Flanged 2-Way Globe Valves

Figure-11 Mx41-715x with Flanged 3-Way Globe Valves

Valve Assemblies with Mx40-717x Spring Return DuraDrive Electric Actuators

Figure-12 Mx40-717x-220 Actuator/Linkage Assembly

Figure-13 Mx40-717x-230 Actuator/Linkage Assembly

Dimensions - 2-1/2" to 6" Flanged Globe Valve Assemblies

Valve Assembly Part Number	Valve Size	$\left\lvert\, \begin{gathered} \text { P } \\ \text { Code } \end{gathered}\right.$	Valve Dimensions in inches (millimeters)											
			2-Way (Refer to Figure-14)						3-Way (Refer to Figure-15)					
			A	C	E	F	G	H	A	C	E	F	G	H
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8213-57x-5-P } \\ \text { 3-Way } \\ \text { Vx-8303-57x-5-P } \end{gathered}$	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \\ \hline \end{gathered}$	4 (102)	$\begin{gathered} \hline 17-1 / 4 \\ (438) \\ \hline \end{gathered}$	7 (178)	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-3 / 4 \\ & (222) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 8-9 / 16 \\ (217)) \\ \hline \end{array}$	$\begin{gathered} \hline 5-7 / 16 \\ (138) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 17-1 / 4 \\ & (438) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 7 \\ (178) \\ \hline \end{array}$	$\begin{aligned} & 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 8-3 / 4 \\ (222) \\ \hline \end{array}$
	$3 "$	13	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4-5 / 8 \\ & (117) \\ & \hline \end{aligned}$	17 (432)	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152	9 (229)	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \\ & \hline \end{aligned}$	$\begin{gathered} 17 \\ (432) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152	9 (229)
	4"	14	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{gathered} \hline 18-1 / 4 \\ (464) \end{gathered}$	9 (229)	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 4 \\ & (248) \end{aligned}$	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \end{aligned}$	$\begin{gathered} \hline 8-7 / 16 \\ (214) \end{gathered}$	$\begin{aligned} & 18-1 / 4 \\ & (464) \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 4 \\ & (248) \end{aligned}$
	5"	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{array}{\|c} 6-15 / 16 \\ (176) \end{array}$	$\begin{gathered} 18-3 / 16 \\ (462) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 10-1 / 16 \\ (256) \end{gathered}$	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 8-13 / 1 \\ 6 \\ (224) \\ \hline \end{gathered}$	$\begin{gathered} 17-1 / 4 \\ (464) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 10-1 / 16 \\ (256) \end{gathered}$
	$6 "$	16	$\begin{gathered} \hline 14 \\ (356) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (190) \end{aligned}$	$\begin{gathered} 19-15 / 16 \\ (507) \end{gathered}$	$\begin{gathered} 11 \\ (280) \\ \hline \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & 9-3 / 4 \\ & (248) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 20-1 / 4 \\ (515) \end{gathered}$	$\begin{gathered} \hline 11 \\ (280) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$
$\begin{gathered} \text { 2-Way } \\ \text { Vx-8223-57x-5-P } \end{gathered}$	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \\ \hline \end{gathered}$	4 (102)	$\begin{aligned} & \hline 16-5 / 8 \\ & (422) \end{aligned}$	7 (178)	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 8-3 / 4 \\ & (222) \end{aligned}$	-	-	-	-	-	-
	3"	13	$\begin{array}{\|l\|} \hline 9-1 / 2 \\ (241) \\ \hline \end{array}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 17-1 / 4 \\ (438) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152	9 (229)	-	-	-	-	-	-
	4"	14	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4-15 / 16 \\ (125) \end{gathered}$	$\begin{gathered} \hline 18-1 / 4 \\ (464) \end{gathered}$	9 (229)	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 9-3 / 4 \\ & (248) \end{aligned}$	-	-	-	-	-	-
	$5 "$	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{array}{\|c\|} \hline 5-7 / 16 \\ (138) \end{array}$	$\begin{gathered} \hline 19-3 / 8 \\ (492) \end{gathered}$	$\begin{gathered} \hline 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 10-1 / 16 \\ (256) \end{gathered}$	-	-	-	-	-	-
	$6 "$	16	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & \hline 6-1 / 4 \\ & (159) \end{aligned}$	$\begin{gathered} 21-3 / 8 \\ (543) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (280) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 12 \\ (305) \\ \hline \end{gathered}$	-	-	-	-	-	-

Figure-14 Mx40-717x with Flanged 2-Way Globe Valves

Figure-15 Mx40-717x with Flanged 3-Way Globe Valves

Actuator Specifications and Valve Assembly Mounting Dimensions

Valve Assemblies with MK-6811 and MK-6911 Spring Return Pneumatic Actuators

Actuator Specifications	
Inputs	
Control Signal	5 to 10 psig (34 to 69 kPa). Positive positioner start point adjustable 1 to $12 \mathrm{psi}(7$ to 83 kPa). Positive positioner span adjustable 2 to $13 \mathrm{psi}(14$ to 89 kPa$)$.
Supply Pressure	15 to 20 psig (103 to 137 kPa) nominal, $30 \mathrm{psig}(205 \mathrm{kPa})$ maximum.
Air Connections	1/8 in FNPT
Effective Area	50 sq. in. (323 cm ${ }^{2}$)
Outputs	
	MK-6811: 1" (25 mm) nominal stroke. MK-6911: 1-3/4" (45 mm) nominal stroke.
Environment	
Temperature Limits	Shipping and storage: -40 to $220^{\circ} \mathrm{F}\left(-40\right.$ to $\left.104^{\circ} \mathrm{C}\right)$ ambient. Operating: $-20^{\circ} \mathrm{F}$ to $220^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right.$ to $\left.104^{\circ} \mathrm{C}\right)$. Maximum allowable ambient: $220^{\circ} \mathrm{F}\left(104^{\circ} \mathrm{C}\right)$ at maximum valve fluid temperature of $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$. Minimum allowable valve fluid temperature: $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$.
Positive Positioner	AK-42309-500 recommended for 5" valve, required for 6" valve. Order separately. Supplied as standard on VK4 factory valve assemblies.

Figure-16 MK-6811 Actuator

Figure-17 MK-6911 Actuator

Dimensions - 2-1/2" to 6" Flanged Globe Valve Assemblies												
Valve Assembly Part Number ${ }^{\text {a }}$	Valve Size	$\begin{gathered} \text { P } \\ \text { Code } \end{gathered}$	Valve Dimensions in inches (millimeters)									
			2-Way (Refer to Figure-18 and Figure-20)					3-Way (Refer to Figure-19 and Figure-21)				
			A	C	E	F	G	A	C	E	F	G
	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	4 (102)	$\begin{gathered} \hline 15-7 / 8 \\ (403) \end{gathered}$	$\begin{gathered} 7 \\ (178) \end{gathered}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 8-9 / 16 \\ & (217)) \end{aligned}$	$\begin{gathered} \hline 5-7 / 16 \\ (138) \end{gathered}$	$\begin{aligned} & \hline 15-5 / 8 \\ & (397) \end{aligned}$	$\begin{gathered} 7 \\ (178) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \\ & \hline \end{aligned}$
2-Way VK-8213-602-5-P VK4-8213-6x2-5-P 3-Way VK-8303-602-5-15 VK4-8303-6x2-5-P	$3 "$	13	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 4-5 / 8 \\ & (117) \end{aligned}$	$\begin{gathered} 16-1 / 4 \\ (413) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	6 (152)	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 6-3 / 8 \\ & (162) \end{aligned}$	$\begin{gathered} 16-1 / 4 \\ (413) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$
	4"	14	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	$\begin{aligned} & \hline 16-7 / 8 \\ & (429) \end{aligned}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \end{aligned}$	$\begin{aligned} & \hline 8-7 / 16 \\ & (214) \end{aligned}$	$\begin{gathered} \hline 16-7 / 8 \\ (429) \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$
	5"	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 6-15 / 16 \\ (176) \end{gathered}$	$\begin{gathered} 18-3 / 16 \\ (462) \end{gathered}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{gathered} 8-13 / 1 \\ 6 \\ (224) \end{gathered}$	$\begin{array}{\|c} 18-3 / 16 \\ (462) \end{array}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & 8-1 / 2 \\ & (216) \end{aligned}$
	$6 "$	16	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & (190) \end{aligned}$	$\begin{gathered} \hline 21-9 / 16 \\ (548) \end{gathered}$	$\begin{gathered} 11 \\ (280) \\ \hline \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{gathered} 14 \\ (356) \end{gathered}$	$\begin{aligned} & 9-3 / 4 \\ & (248) \end{aligned}$	$\begin{gathered} \hline 21-9 / 16 \\ (548) \end{gathered}$	$\begin{gathered} 11 \\ (280) \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \end{aligned}$
$\begin{array}{\|c} \text { 2-Way } \\ \text { VK-8223-602-5-P } \\ \text { VK4-8223-6x2-5-P } \end{array}$	2-1/2"	12	$\begin{gathered} \hline 8-9 / 16 \\ (217) \end{gathered}$	4 (102)	$\begin{gathered} \hline 16-1 / 4 \\ (413) \end{gathered}$	$\begin{gathered} \hline 7 \\ (178) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5-1 / 2 \\ & (140) \end{aligned}$	-	-	-	-	-
	3 "	13	$\begin{aligned} & \hline 9-1 / 2 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 4-1 / 4 \\ & (108) \end{aligned}$	$\begin{gathered} \hline 16-5 / 8 \\ (422) \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	6 (152)	-	-	-	-	-
	4"	14	$\begin{aligned} & \hline 11-1 / 2 \\ & (292) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4-15 / 16 \\ (125) \end{gathered}$	$\begin{gathered} 17-7 / 8 \\ (454) \end{gathered}$	$\begin{gathered} 9 \\ (229) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7-1 / 2 \\ & (191) \end{aligned}$	-	-	-	-	-
	5"	15	$\begin{gathered} 13 \\ (330) \end{gathered}$	$\begin{array}{\|c\|} \hline 5-7 / 16 \\ (138) \end{array}$	$\begin{aligned} & \hline 19-3 / 8 \\ & (492) \end{aligned}$	$\begin{gathered} 10 \\ (254) \end{gathered}$	$\begin{aligned} & \hline 8-1 / 2 \\ & (216) \end{aligned}$	-	-	-	-	-
	$6 "$	16	$\begin{gathered} 14 \\ (356) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6-1 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{gathered} 22-15 / 16 \\ (583) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (280) \\ \hline \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & (241) \\ & \hline \end{aligned}$	-	-	-	-	-

a VK4 factory assemblies include AK-42309-500 positive positioner. Positive positioner optional for 2-1/2" to 5", required for 6".

Figure-18 MK-6811 with Flanged 2-Way Globe Valves

Figure-20 MK-6911 with Flanged 2-Way Globe Valves

Figure-19 MK-6811 with Flanged 3-Way Globe Valves

Figure-21 MK-6911 with Flanged 3-Way Globe Valves

System Design Considerations

Linked Globe Valve Assemblies

Note: The information in this section describes characteristics of the VB-8xx3 valve bodies, which are used in the Vx-8xx3 valve assemblies. This information is also useful when installing the $M x 4 x-x x x x-2 x x$ series actuator/linkage assemblies onto these valve bodies.

Control Precision

2-Way Valves: The flow curve shown in Figure-22 is representative of all sizes. All valve plugs have lower gain when nearly closed to enhance control at low demand. Two-way valves are nominally equal percentage and normally used for water and low pressure steam.

Figure-22 Typical Modified Equal Percentage Flow Characteristics

3-Way Valves: 3-way mixing valves are designed so that the flow from either of the inlet ports to the outlet is nominally linear, which means the total flow from the outlet is almost constant over the stroke of the valve stem. The flow is limited at the initial opening similar to an equal percentage curve to enhance system stability. See Figure- 23 for typical flow characteristics of the VB-8303 series valve bodies.

Figure-23 Typical Flow Characteristics

Rangeability

Rangeability is the ratio of rated flow to the minimum controllable flow through a valve. The nominal rangeability of the VB-8xx3 Series is greater than 100:1.

Temperature/Pressure Ratings

See Figure-24 for temperature and pressure ratings of 2-way and 3-way valves. Ratings conform with published values and disclaimer.

VB-8xx3-0-5-P (Cast Iron Body with Flanged End Fittings)

Standards: Pressure to ANSI B16.1, Class 125 , with $200 \mathrm{psi}(1379 \mathrm{kPa})$ up to $150{ }^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$, decreasing to $169 \mathrm{psi}(1165 \mathrm{kPa})$ at $281^{\circ} \mathrm{F}\left(138{ }^{\circ} \mathrm{C}\right)$.

Materials:
Valve body: Cast iron, ASTM A126 Class B.
Trim: Stainless steel stem, forged brass plug, metal-to-metal or EPDM seat ring with TFE/EPDM packing parts and silicone packing grease.

Pressure—psig (kPa)

Figure-24 Temperature and Pressure Ratings for VB-8xx3 Series Globe Valves

Close-off Ratings

Nominal actuator close-off ratings are based on ANSI IV (0.01% leakage) for valves with EPDM seat rings such as VB-8213 and VB-8223. Metal-to-metal trim valves such as VB-8303 are designed for ANSI III (0.1% leakage).

Installation Considerations

Mounting Angle of Valve Assembly

Be sure to allow the necessary clearance around the valve assembly. The valve assembly must be mounted so that the valve stem is at least 5° above the horizontal. This ensures that any condensate that forms on the valve body will not travel into the linkage or actuator, where it may cause corrosion. On steam applications, where the ambient temperature approaches the limit of the actuator, the valve assembly must be mounted 45° from vertical.

Insulation of Linked Globe Valve Assembly

The globe valve should be completely insulated to minimize the effect of heat transfer and condensation at the actuator.
Caution: The actuator/linkage must not be insulated. Doing so will result in excess heat or condensation within the actuator.

Temperature Limits for Globe Valve Assembly

When installing the globe valve assembly, observe the minimum and maximum temperature limits given in the Actuator Specifications and Valve Assembly Mounting Dimensions section of this document.

Sizing and Selection

Flow Coefficient (C_{v})

Sizing a valve requires selecting a flow coefficient $\left(\mathrm{C}_{\mathrm{v}}\right)$, which is defined as the flow rate in gallons per minute (GPM) of $60^{\circ} \mathrm{F}$ water that will pass through the fully open valve with a 1 psi pressure drop $(\Delta \mathrm{p})$. It is calculated according to the formula:

$$
\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{GPM}}{\sqrt{\Delta \mathrm{P}}}
$$

Since the flow rate and resultant pressure drop through the heat exchanger is usually specified, the only variable normally available in sizing a valve is the valve pressure drop. The following information can be used to determine what pressure drop to use in calculating a valve C_{v}. Using the calculated C_{v}, refer to Step 6 on page 4 to select the valve body with the nearest available C_{v}.

Caution: Be sure to check that the anticipated pressure drop across the valve will not exceed the close-off pressure ratings in Table-1 and the maximum pressure differential ratings listed in Table-8 to Table-13.

Two-position Control

Two-position control valves are normally selected "line size" to keep pressure drop at a minimum. If it is desirable to reduce the valve below line size, then 10% of "available pressure" (that is, the pump pressure differential available between supply and return mains with design flow at the valve location) is normally used to select the valve.

Proportional Control

Proportional control valves are usually selected to take a pressure drop equal to at least 50% of the "available pressure." As "available pressure" is often difficult to calculate, the normal procedure is to select the valve using a pressure drop at least equal to the drop in the coil or other load being controlled (except where small booster pumps are used) with a minimum recommended pressure drop of $5 \mathrm{psi}(34 \mathrm{kPa})$. When the design temperature drop is less than $60^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$ for conventional heating systems, higher pressure drops across the valve are needed for good results (Table-14).

Table-14 Conventional Heating System.

Design Temperature Load Drop ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Recommended Pressure Drop ${ }^{\text {a }}$ (\% of Available Pressure)	Multiplier on Load Drop
$60(33)$ or More	50%	$1 \times$ Load Drop
$40(22)$	66%	$2 \times$ Load Drop
$20(11)$	75%	$3 \times$ Load Drop

a Recommended minimum pressure drop $=5 \mathrm{psi}(34 \mathrm{kPa})$.
Secondary Circuits with Small Booster Pumps: 50\% of available pressure difference (equal to the drop through load, or 50\% of booster pump head).

3-Way Mixing Valves Used to Bypass Flow

When 3-way linked globe valve assemblies are used to control flow through a heating or cooling coil, the valve assembly is piped as a mixing valve on the outlet side of the coil to throttle the water flow through the load, and therefore control the heat output of the coil (Figure-25).

Figure-25 Typical Piping Choices for VB-8303 as 3-Way Mixing Valve for Control of Heating or Cooling Coil

3-Way Mixing Valves Used to Blend Water Flows

Three-way mixing valves used to blend two water flows (Figure-26) control the heat output by varying the water temperature to the load at constant flow. These valves do not require high pressure drops for good control results. They can be sized for a pressure drop of 20% of the "available pressure" or equal to 25% of the pressure drop through the load at full flow.

3-Way Diverting Valves

Proportional and two-position 3-way diverting linked globe valve assemblies are used to control the flow of hot or chilled fluids in heating systems, cooling coils, or other load by diverting the flow to either the load or a bypass. The valve must be piped with one inlet and two outlets. (Figure-27).

Figure-27 Typical Piping of VB-8303 as 3-Way Diverting Valve
© Copyright 2004 Invensys Building Systems, Inc. All rights reserved
No part of this document may be photocopied or reproduced by any means, or translated to another language without prior written consent of Invensys.

All specifications are nominal and may change as design improvements are introduced. Invensys shall not be liable for damages resulting from misapplication or misuse of its products.

Invensys, DuraDrive, EconoDrive and DuraLynx are trademarks of Invensys plc and its subsidiaries and affiliates.

All other trademarks are the property of their respective owners.
U.S. Patents 5,838,124 5,847,530 5,872,434 and 6,394,135.

[^0]: a MFC-8000 control module may be installed for Vdc control or MFC-420 control module may be installed for mAdc control.
 b Not available when MFC control modules are used.

